On the Remarkable Features of the Lower Limits of Charge and the Radiated Energy of Antennas as Predicted by Classical Electrodynamics
نویسندگان
چکیده
Abstract: Electromagnetic energy radiated by antennas working in both the frequency domain and time domain is studied as a function of the charge associated with the current in the antenna. The frequency domain results, obtained under the assumption of sinusoidal current distribution, show that, for a given charge, the energy radiated within a period of oscillation increases initially with L/λ and then starts to oscillate around a steady value when L/λ > 1. The results show that for the energy radiated by the antenna to be equal to or larger than the energy of one photon, the oscillating charge in the antenna has to be equal to or larger than the electronic charge. That is, U ě hν or UT ě h ñ q ě e , where U is the energy dissipated over a period, ν is the frequency of oscillation, T is the period, h is Planck’s constant, q is the rms value of the oscillating charge, and e is the electronic charge. In the case of antennas working in the time domain, it is observed that U∆t ě h{4π ñ q ě e , where U is the total energy radiated, ∆t is the time over which the energy is radiated, and q is the charge transported by the current. It is shown that one can recover the time–energy uncertainty principle of quantum mechanics from this time domain result. The results presented in this paper show that when quantum mechanical constraints are applied to the electromagnetic energy radiated by a finite antenna as estimated using the equations of classical electrodynamics, the electronic charge emerges as the smallest unit of free charge in nature.
منابع مشابه
A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملA Novel Volcano Smoke Antenna with Optimal Shape
The design of a novel volcano smoke antenna for UWB indoor applications is presented. The design method is based on a general description for the geometry of UWB monopole antennas which is capable of producing most possible shapes for these antennas. It is also compatible with different optimization methods. In addition to a volcano smoke antenna, this method is used to design two optimized mon...
متن کاملارزیابی پرتوگیری مردم از آنتنهای ایستگاههای تلفن همراه در کشور
Fast growth of the number of mobile phone subscribers in Iran, over the last few years, is the reason for construction of more and more base stations (BTS) especially in residential areas. As the BTS antennas emit radiofrequency (RF) electromagnetic energy, so it is the main concern of general public about their health and safety. The aim of this research work is to assess public exposure...
متن کاملارزیابی میدانهای الکتریکی و مغناطیسی لامپهای کم مصرف از نوع فلورسنت فشرده از دیدگاه حفاظت پرتوی
The technology used in energy-saving compact fluorescent lamps (CFLs), provides a quarter of the energy consumption of incandescent lamps to produce equivalent light energy while CLFs shelf life is up to ten times of incandescent lamps. So the incandescent lamps in homes and workplaces are replaced with CFLs. Due to the use of ballast in the structure of CFLs, electric and magnetic fields are g...
متن کاملMeasurement and Computational Modeling of Radio-Frequency Electromagnetic Power Density Around GSM Base Transceiver Station Antennas
Evaluating the power densities emitted by GSM1800 and GSM900 BTS antennas isconducted via two methods. Measurements are carried out in half a square meter grids around twoantennas. CST Microwave STUDIO software is employed to estimate the power densities in order fordetailed antenna and tower modeling and simulation of power density. Finally, measurements obtainedfrom computational and experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016